A constructive converse of the mean value theorem
نویسندگان
چکیده
منابع مشابه
A Constructive Converse Lyapunov Theorem on Exponential Stability
Closed physical systems eventually come to rest, the reason being that due to friction of some kind they continuously lose energy. The mathematical extension of this principle is the concept of a Lyapunov function. A Lyapunov function for a dynamical system, of which the dynamics are modelled by an ordinary differential equation (ODE), is a function that is decreasing along any trajectory of th...
متن کاملThe First Mean Value Theorem for Integrals
For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...
متن کاملThe Mean Value Theorem and Its Consequences
The point (M,f(M)) is called an absolute maximum of f if f(x) ≤ f(M) for every x in the domain of f . The point (m, f(m)) is called an absolute minimum of f if f(x) ≥ f(m) for every x in the domain of f . More than one absolute maximum or minimum may exist. For example, if f(x) = |x| for x ∈ [−1, 1] then f(x) ≤ 1 and there are absolute maxima at (1, 1) and at (−1, 1), but only one absolute mini...
متن کاملA Converse to Dye’s Theorem
Every non-amenable countable group induces orbit inequivalent ergodic equivalence relations on standard Borel probability spaces. Not every free, ergodic, measure preserving action of F2 on a standard Borel probability space is orbit equivalent to an action of a countable group on an inverse limit of finite spaces. There is a treeable non-hyperfinite Borel equivalence relation which is not univ...
متن کاملWeil Converse Theorem
Hecke generalized this equivalence, showing that an integral form has an associated Dirichlet series which can be analytically continued to C and satisfies a functional equation. Conversely, Weil showed that, if a Dirichlet series satisfies certain functional equations, then it must be associated to some integral form. Our goal in this paper is to describe this work. In the first three sections...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2000
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(00)88581-x